Statistical Inference for a Two-Stage Outcome-Dependent Sampling Design with a Continuous Outcome

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric inference for a 2-stage outcome-auxiliary-dependent sampling design with continuous outcome.

Two-stage design has long been recognized to be a cost-effective way for conducting biomedical studies. In many trials, auxiliary covariate information may also be available, and it is of interest to exploit these auxiliary data to improve the efficiency of inferences. In this paper, we propose a 2-stage design with continuous outcome where the second-stage data is sampled with an "outcome-auxi...

متن کامل

Semiparametric Inference for Data with a Continuous Outcome from a Two-Phase Probability Dependent Sampling Scheme.

Multi-phased designs and biased sampling designs are two of the well recognized approaches to enhance study efficiency. In this paper, we propose a new and cost-effective sampling design, the two-phase probability dependent sampling design (PDS), for studies with a continuous outcome. This design will enable investigators to make efficient use of resources by targeting more informative subjects...

متن کامل

Causal inference in outcome-dependent two-phase sampling designs

We consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals is drawn from a population. On these individuals, information is obtained on treatment, outcome and a few low dimensional covariates. These individuals are then stratified according to these factors. In the second pha...

متن کامل

Graphical Models for Inference Under Outcome-Dependent Sampling

We consider situations where data have been collected such that the sampling depends on the outcome of interest and possibly further covariates, as for instance in case-control studies. Graphical models represent assumptions about the conditional independencies among the variables. By including a node for the sampling indicator, assumptions about sampling processes can be made explicit. We demo...

متن کامل

Large Sample Theory for Semiparametric Regression Models with Two-Phase, Outcome Dependent Sampling

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2010

ISSN: 0006-341X

DOI: 10.1111/j.1541-0420.2010.01446.x